Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.189
Filtrar
1.
J Am Chem Soc ; 146(11): 7135-7139, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441879

RESUMO

Organic near-infrared (NIR) photoblinking fluorophores are highly desirable for live-cell super-resolution imaging based on single-molecule localization microscopy (SMLM). Herein we introduce a novel small chromophore, PMIP, through the fusion of perylenecarboximide with 2,2-dimetheylpyrimidine. PMIP exhibits an emission maximum at 732 nm with a high fluorescence quantum yield of 60% in the wavelength range of 700-1000 nm and excellent photoblinking without any additives. With resorcinol-functionalized PMIP (PMIP-OH), NIR SMLM imaging of lysosomes is demonstrated for the first time in living mammalian cells under physiological conditions. Moreover, metabolically labeled nascent DNA is site-specifically detected using azido-functionalized PMIP (PMIP-N3) via click chemistry, thereby enabling the super-resolution imaging of nascent DNA in phosphate-buffered saline with a 9-fold improvement in spatial resolution. These results indicate the potential of PMIP-based NIR blinking fluorophores for biological applications of SMLM.


Assuntos
Corantes Fluorescentes , Imagem Individual de Molécula , Animais , Corantes Fluorescentes/química , Microscopia de Fluorescência , Imagem Individual de Molécula/métodos , Imagem Óptica , DNA , Mamíferos
2.
Biochem Soc Trans ; 52(2): 899-909, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38533854

RESUMO

RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.


Assuntos
COVID-19 , Conformação de Ácido Nucleico , Pinças Ópticas , SARS-CoV-2 , Imagem Individual de Molécula , SARS-CoV-2/genética , Imagem Individual de Molécula/métodos , COVID-19/virologia , Humanos , RNA Viral/química , RNA/química , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
3.
Nat Commun ; 15(1): 1940, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431671

RESUMO

Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax. We demonstrate this optical robustness experimentally with high accuracy ( > 99.2 ± 0.1%, 0.1 locs µm-2) and sensitivity ( > 86.6 ± 0.9%, 0.1 locs µm-2) through whole-cell (scan-free) imaging and tracking of single membrane proteins in live primary B cells. We also exemplify high-density volumetric imaging (0.15 locs µm-2) in dense cytosolic tubulin datasets.


Assuntos
Imageamento Tridimensional , Microscopia , Microscopia/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Nanotecnologia
4.
Nat Commun ; 15(1): 2445, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503728

RESUMO

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.


Assuntos
Arabidopsis , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Imagem Individual de Molécula/métodos , Elétrons
5.
Nat Commun ; 15(1): 1763, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409214

RESUMO

The morphology of protein assemblies impacts their behaviour and contributes to beneficial and aberrant cellular responses. While single-molecule localization microscopy provides the required spatial resolution to investigate these assemblies, the lack of universal robust analytical tools to extract and quantify underlying structures limits this powerful technique. Here we present SEMORE, a semi-automatic machine learning framework for universal, system- and input-dependent, analysis of super-resolution data. SEMORE implements a multi-layered density-based clustering module to dissect biological assemblies and a morphology fingerprinting module for quantification by multiple geometric and kinetics-based descriptors. We demonstrate SEMORE on simulations and diverse raw super-resolution data: time-resolved insulin aggregates, and published data of dSTORM imaging of nuclear pore complexes, fibroblast growth receptor 1, sptPALM of Syntaxin 1a and dynamic live-cell PALM of ryanodine receptors. SEMORE extracts and quantifies all protein assemblies, their temporal morphology evolution and provides quantitative insights, e.g. classification of heterogeneous insulin aggregation pathways and NPC geometry in minutes. SEMORE is a general analysis platform for super-resolution data, and being a time-aware framework can also support the rise of 4D super-resolution data.


Assuntos
Insulinas , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Fibroblastos , Aprendizado de Máquina , Análise de Dados
6.
Methods Cell Biol ; 182: 237-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359980

RESUMO

Single molecule super resolution microscopy overcomes the diffraction limit by separating individual fluorophore emissions over time, resulting in spatial resolutions that are far superior to epifluorescence microscopy. This allows for DNA damage response (DDR) events to be investigated in greater detail. A variety of DNA damaging drugs can be used on S-phase synchronized immortalized cell lines alongside 5-ethynyl-2'-deoxyuridine (EdU) pulse labelling to ultimately visualize DNA repair pathways at distinct time points and quantify colocalizations between nascent DNA and immunolabeled DDR proteins. This chapter will outline super resolution microscopy assays to interrogate the spatiotemporal organization of DNA repair proteins at damaged foci during DDR events within immortalized cell lines.


Assuntos
Dano ao DNA , Microscopia , DNA/genética , DNA/metabolismo , Linhagem Celular , Imagem Individual de Molécula/métodos , Reparo do DNA
7.
J Am Chem Soc ; 146(8): 5195-5203, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38275287

RESUMO

Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.


Assuntos
Piscadela , Corantes Fluorescentes , Animais , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , Lisossomos/metabolismo , Mamíferos/metabolismo
8.
J Mol Biol ; 436(2): 168368, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977298

RESUMO

The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Imagem Individual de Molécula , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Fluorescência , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/química , Transporte Proteico , Imagem Individual de Molécula/métodos
9.
STAR Protoc ; 5(1): 102790, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113144

RESUMO

Here, we present a protocol for single-molecule super-resolution imaging of the nuclear export of pre-ribosomal subunits pre-40S and pre-60S through nuclear pore complexes. We describe steps for plating cells and co-transfecting cells. We then detail steps for using single-point edge-excitation sub-diffraction microscopy, allowing visualization of real-time dynamics of the pre-ribosomal subunits. For complete details on the use and execution of this protocol, please refer to Junod et al. (2023).1.


Assuntos
Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Subunidades Ribossômicas/metabolismo , Imagem Individual de Molécula/métodos
10.
Anal Chem ; 96(2): 895-903, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38156958

RESUMO

Deciphering the oligomeric state of proteins within cells is pivotal to understanding their role in intricate cellular processes. With the recent advances in single-molecule localization microscopy, previous efforts have harnessed protein location density approaches, coupled with simulations, to extract membrane protein oligomeric states in cells, highlighting the value of such techniques. However, a comprehensive theoretical approach that can be universally applied across different proteins (e.g., membrane and cytosolic proteins) remains elusive. Here, we introduce the theoretical probability of neighbor density (PND) as a robust tool to discern protein oligomeric states in cellular environments. Utilizing our approach, the theoretical PND was validated against simulated data for both membrane and cytosolic proteins, consistently aligning with experimental baselines for membrane proteins. This congruence was maintained even when adjusting for protein concentrations or exploring proteins of various oligomeric states. The strength of our method lies not only in its precision but also in its adaptability, accommodating diverse cellular protein scenarios without compromising the accuracy. The development and validation of the theoretical PND facilitate accurate protein oligomeric state determination and bolster our understanding of protein-mediated cellular functions.


Assuntos
Proteínas de Membrana , Imagem Individual de Molécula , Proteínas de Membrana/metabolismo , Imagem Individual de Molécula/métodos , Citosol/metabolismo
11.
Nat Commun ; 14(1): 7893, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036510

RESUMO

Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.


Assuntos
Organelas , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
12.
Nat Commun ; 14(1): 6564, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848439

RESUMO

Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite powered by deep neural networks to rapidly analyze single-, two- and three-color single-molecule data, especially from single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Deep-LASI automatically sorts recorded traces, determines FRET correction factors and classifies the state transitions of dynamic traces all in ~20-100 ms per trajectory. We benchmarked Deep-LASI using ground truth simulations as well as experimental data analyzed manually by an expert user and compared the results with a conventional Hidden Markov Model analysis. We illustrate the capabilities of the technique using a highly tunable L-shaped DNA origami structure and use Deep-LASI to perform titrations, analyze protein conformational dynamics and demonstrate its versatility for analyzing both total internal reflection fluorescence microscopy and confocal smFRET data.


Assuntos
Aprendizado Profundo , Imagem Individual de Molécula , Humanos , Imagem Individual de Molécula/métodos , DNA/química , Microscopia , Conformação Proteica , Transferência Ressonante de Energia de Fluorescência/métodos
13.
Commun Biol ; 6(1): 1050, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848705

RESUMO

Over the last decade, single-molecule localization microscopy (SMLM) has developed into a set of powerful techniques that have improved spatial resolution over diffraction-limited microscopy and demonstrated the ability to resolve biological features down to a few tens of nanometers. We introduce a single molecule-based scanning SMLM (scanSMLM) system that enables rapid volume imaging. Along with epi-illumination, the system employs a scanning-based 4f detection for volume imaging. The 4f system comprises a combination of an electrically-tunable lens and high NA detection objective lens. By rapidly changing the aperture (or equivalently the focus) of an electrically-tunable lens (ETL) in a 4f detection system, the selectivity of the axial object plane is achieved, for which the image forms in the image/detector plane. So, in principle, one can scan the object volume by just altering the aperture of ETL. Two schemes were adopted to carry out volume imaging: cyclic scan and conventional scan. The cyclic scheme scans the volume in each scan cycle, whereas plane-wise scanning is performed in the conventional scheme. Hence, the cyclic scan ensures uniform dwell time on each frame during data collection, thereby evenly distributing photobleaching throughout the cell volume. With a minimal change in the system hardware (requiring the addition of an ETL lens and related electronics for step-voltage generation) in the existing SMLM system, volume scanning (along the z-axis) can be achieved. To calibrate and derive critical system parameters, we imaged fluorescent beads embedded in a gel-matrix 3D block as a test sample. Subsequently, scanSMLM is employed to visualize the architecture of actin-filaments and the distribution of Meos-Tom20 molecules on the mitochondrial membrane. The technique is further exploited to understand the clustering of Hemagglutinin (HA) protein single molecules in a transfected cell for studying Influenza-A disease progression. The system, for the first time, enabled 3D visualization of HA distribution that revealed HA cluster formation spanning the entire cell volume, post 24 hrs of transfection. Critical biophysical parameters related to HA clusters (density, the number of HA molecules per cluster, axial span, fraction of clustered molecules, and others) are also determined, giving an unprecedented insight into Influenza-A disease progression at the single-molecule level.


Assuntos
Influenza Humana , Cristalino , Humanos , Microscopia , Imagem Individual de Molécula/métodos , Progressão da Doença
14.
Curr Protoc ; 3(10): e908, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830764

RESUMO

In single-molecule localization microscopy (SMLM), immunofluorescence (IF) staining affects the quality of the reconstructed superresolution images. However, optimizing IF staining remains challenging because IF staining is a one-step, irreversible process. Sample labeling through reversible binding presents an alternative strategy, but such techniques require significant technological advancements to enhance the dissociation of labels without sacrificing their binding specificity. In this article, we introduce time-lapse imaging of single-antibody labeling. Our versatile technique utilizes commercially available dye-conjugated antibodies. The method controls the antibody concentrations to capture single-antibody labeling of subcellular targets, thereby achieving SMLM through the labeling process. We further demonstrate dual-color single-antibody labeling to enhance the sample labeling density. The new approach allows the evaluation of antibody binding at the single-antibody level and within the cellular environment. This comprehensive guide offers step-by-step instructions for time-lapse imaging of single-antibody labeling experiments and enables the application of the single-antibody labeling technique to a wide range of targets. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for single-antibody labeling Basic Protocol 2: Data acquisition for single-molecule localization microscopy Alternate Protocol: Dual-color single-antibody labeling using OptoSplit II equation Basic Protocol 3: Image analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo , Imagem Individual de Molécula/métodos , Coloração e Rotulagem
15.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756700

RESUMO

MOTIVATION: The nuclear pore complex (NPC) is the only passageway for macromolecules between nucleus and cytoplasm, and an important reference standard in microscopy: it is massive and stereotypically arranged. The average architecture of NPC proteins has been resolved with pseudoatomic precision, however observed NPC heterogeneities evidence a high degree of divergence from this average. Single-molecule localization microscopy (SMLM) images NPCs at protein-level resolution, whereupon image analysis software studies NPC variability. However, the true picture of this variability is unknown. In quantitative image analysis experiments, it is thus difficult to distinguish intrinsically high SMLM noise from variability of the underlying structure. RESULTS: We introduce CIR4MICS ('ceramics', Configurable, Irregular Rings FOR MICroscopy Simulations), a pipeline that synthesizes ground truth datasets of structurally variable NPCs based on architectural models of the true NPC. Users can select one or more N- or C-terminally tagged NPC proteins, and simulate a wide range of geometric variations. We also represent the NPC as a spring-model such that arbitrary deforming forces, of user-defined magnitudes, simulate irregularly shaped variations. Further, we provide annotated reference datasets of simulated human NPCs, which facilitate a side-by-side comparison with real data. To demonstrate, we synthetically replicate a geometric analysis of real NPC radii and reveal that a range of simulated variability parameters can lead to observed results. Our simulator is therefore valuable to test the capabilities of image analysis methods, as well as to inform experimentalists about the requirements of hypothesis-driven imaging studies. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/uhlmanngroup/cir4mics. Simulated data: BioStudies S-BSST1058.


Assuntos
Microscopia , Poro Nuclear , Humanos , Poro Nuclear/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Imagem Individual de Molécula/métodos , Software
16.
J Virol ; 97(10): e0089223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772835

RESUMO

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Assuntos
Antivirais , Hepacivirus , Proteínas do Core Viral , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Nucleocapsídeo/antagonistas & inibidores , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Imagem Individual de Molécula/métodos , Ligação Proteica
17.
Cell Rep Methods ; 3(9): 100571, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751691

RESUMO

Single-molecule localization microscopy (SMLM) can reach sub-50 nm resolution using techniques such as stochastic optical reconstruction microscopy (STORM) or DNA-point accumulation for imaging in nanoscale topography (PAINT). Here we implement two approaches for faster multicolor SMLM by splitting the emitted fluorescence toward two cameras: simultaneous two-color DNA-PAINT (S2C-DNA-PAINT) that images spectrally separated red and far-red imager strands on each camera, and spectral demixing dSTORM (SD-dSTORM) where spectrally close far-red fluorophores appear on both cameras before being identified by demixing. Using S2C-DNA-PAINT as a reference for low crosstalk, we evaluate SD-dSTORM crosstalk using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets. We then assess if crosstalk can affect the detection of biologically relevant subdiffraction patterns. Extending these approaches to three-dimensional acquisition and SD-dSTORM to three-color imaging, we show that spectral demixing is an attractive option for robust and versatile multicolor SMLM investigations.


Assuntos
DNA , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
18.
Angew Chem Int Ed Engl ; 62(39): e202307538, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37581373

RESUMO

Super-resolution techniques like single-molecule localisation microscopy (SMLM) and stimulated emission depletion (STED) microscopy have been extended by the use of non-covalent, weak affinity-based transient labelling systems. DNA-based hybrid systems are a prominent example among these transient labelling systems, offering excellent opportunities for multi-target fluorescence imaging. However, these techniques suffer from higher background relative to covalently bound fluorophores, originating from unbound fluorophore-labelled single-stranded oligonucleotides. Here, we introduce short-distance self-quenching in fluorophore dimers as an efficient mechanism to reduce background fluorescence signal, while at the same time increasing the photon budget in the bound state by almost 2-fold. We characterise the optical and thermodynamic properties of fluorophore-dimer single-stranded DNA, and show super-resolution imaging applications with STED and SMLM with increased spatial resolution and reduced background.


Assuntos
DNA , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Oligonucleotídeos
19.
Sci Rep ; 13(1): 12561, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532749

RESUMO

The blinking properties of a single molecule are critical for single-molecule localization microscopy (SMLM). Typically, SMLM techniques involve recording several frames of diffraction-limited bright spots of single-molecules with a detector exposure time close to the blinking period. This sets a limit on the temporal resolution of SMLM to a few tens of milliseconds. Realizing that a substantial fraction of single molecules emit photons for time scales much shorter than the average blinking period, we propose accelerating data collection to capture these fast emitters. Here, we put forward a short exposure-based SMLM (shortSMLM) method powered by sCMOS detector for understanding dynamical events (both at single molecule and ensemble level). The technique is demonstrated on an Influenza-A disease model, where NIH3T3 cells (both fixed and live cells) were transfected by Dendra2-HA plasmid DNA. Analysis shows a 2.76-fold improvement in the temporal resolution that comes with a sacrifice in spatial resolution, and a particle resolution shift PAR-shift (in terms of localization precision) of [Formula: see text] 11.82  nm compared to standard SMLM. We visualized dynamic HA cluster formation in transfected cells post 24 h of DNA transfection. It is noted that a reduction in spatial resolution does not substantially alter cluster characteristics (cluster density, [Formula: see text] molecules/cluster, cluster spread, etc.) and, indeed, preserves critical features. Moreover, the time-lapse imaging reveals the dynamic formation and migration of Hemagglutinin (HA) clusters in a live cell. This suggests that [Formula: see text] using a synchronized high QE sCMOS detector (operated at short exposure times) is excellent for studying temporal dynamics in cellular system.


Assuntos
Hemaglutininas , Imagem Individual de Molécula , Animais , Camundongos , Células NIH 3T3 , Imagem Individual de Molécula/métodos , DNA
20.
Nano Lett ; 23(16): 7253-7259, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37463268

RESUMO

Single-molecule localization microscopy (SMLM) enables the visualization of cellular nanostructures in vitro with sub-20 nm resolution. While substructures can generally be imaged with SMLM, the structural understanding of the images remains elusive. To better understand the link between SMLM images and the underlying structure, we developed a Monte Carlo (MC) simulation based on experimental imaging parameters and geometric information to generate synthetic SMLM images. We chose the nuclear pore complex (NPC), a nanosized channel on the nuclear membrane which gates nucleo-cytoplasmic transport of biomolecules, as a test geometry for testing our MC model. Using the MC model to simulate SMLM images, we first optimized our clustering algorithm to separate >106 molecular localizations of fluorescently labeled NPC proteins into hundreds of individual NPCs in each cell. We then illustrated using our MC model to generate cellular substructures with different angles of labeling to inform our structural understanding through the SMLM images obtained.


Assuntos
Microscopia , Imagem Individual de Molécula , Método de Monte Carlo , Imagem Individual de Molécula/métodos , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...